

HETE-2 Science Highlights and Partnership w. *Swift*

D. Q. Lamb (U. Chicago)

Swift Workshop, New Orleans, LA 7 September 2004

HETE-2 International Science Team

Center for Space Research

Massachusetts Institute of Technology Cambridge, MA USA

George R. Ricker (PI) Allyn Dullighan

Nat Butler Geoffrey B. Crew Roland K. Vanderspek

John P. Doty

Joel Villasenor

Cosmic Radiation Laboratory

Institute of Physical and Chemical Research (RIKEN)

JAPAN

Masaru Matsuoka (NASDA) Nobuyuki Kawai (Tokyo Inst. Tech) Atsumasa Yoshida (Aoyama G. U.)

> Centre D'Etude Spatiale des **Rayonnements (CESR)**

> > **FRANCE**

Jean-Luc Atteia Celine Barraud Michel Boer Gilbert Vedrenne

> Brazil + India + Italy (Burst Alert Station Scientists)

Joao Braga Ravi Manchanda Graziella Pizzichini **Astronomy and Astrophysics Department** University of Chicago, IL USA

Donald Q. Lamb Jr. (Mission Scientist) Carlo Graziani Tim Donaghy

Space Science Laboratory

University of California at Berkeley USA

Kevin Hurley J. Garrett Jernigan

Los Alamos National Laboratory

Los Alamos, NM USA

Edward E. Fenimore Mark Galassi

Board of Astronomy and Astrophysics University of California at Santa Cruz USA

Stanford E. Woosley

National Aero & Space Administration USA

Donald A.Kniffen (NASA Program Scientist) Scott D.Barthelmy (GSFC Project Scientist)

HETE Gamma-ray Bursts: 6 Major Scientific Insights in Past 1.5 Years

"X-Ray Flashes"

- Defining "X-ray flashes" (Heise et al. 2000) as bursts for which $log(S_x/S_{gamma}) > 0$ (i.e., > 30 times that for "normal" GRBs)
 - □ ~ 1/3 of bursts localized by HETE-2 are XRFs
 - □ ~ 1/3 are "X-ray-rich" GRBs
- Nature of XRFs is largely unknown
- XRFs may provide unique insights into
 - Structure of GRB jets
 - GRB rate
 - Nature of Type Ic supernovae

HETE-2 X-Ray Flashes vs. GRBs

Sakamoto et al. (2004)

XRF 020903: Discovery of Optical Afterglow

Soderberg et al. (2002)

Palomar 48-inch Schmidt images: 2002 Sep 6 (left image), 2002 Sep 28 (middle image), subtracted image (right image)

XRF 020903: Implications

- → HETE-2 and optical follow-up observations of GRB020903 show that this XRF:
 - ☐ Lies on the extensions of the above distributions
 - ☐ Lies on an extension of the Amati et al. (2002) relation
 - ☐ Host galaxy is copiously producing stars, similar to those of GRBs
 - ☐ Host galaxy has a redshift z = 0.25, similar to those of GRBs
- □ These results provide evidence that GRBs, X-ray-rich GRBs, and X-Ray Flashes are closely related phenomena

HETE-2 Observations of XRF 030723

Butler et al. (2004)

XRF 030723: Optical Afterglow

□ Increase at ~ 15 days after burst might be due to SN component – or possibly, jet structure

Density of HETE-2 Bursts in (S, E_{peak})-Plane

"Global Properties of XRFs and X-Ray-Rich GRBs Observed by HETE-2," Sakamoto et al. (2004; astro-ph/0409128)

Dependence of GRB Peak Spectral Energy (E_{peak}) on Burst Isotropic Radiated Energy (E_{iso})

HETE-2 results confirm & extend the Amati et al. (2002) relation:

 $E_{\text{peak}} \sim \{E_{\text{iso}}\}^{0.5}$

E_{iso}—E_{peak} Relation *Within* BATSE GRBs

Liang & Dai (2004)

Implications of HETE-2 Observations of XRFs and X-Ray-Rich GRBs

- ☐ HETE-2 results, when combined with earlier results:
 - □ Provide strong evidence that properties of XRFs, X-ray-rich GRBs, and GRBs form a continuum
 - □ Key result: approximately equal numbers of bursts per logrithmic interval in all observed properties
 - Suggest that these three kinds of bursts are closely related phenomena

Observations of XRFs Are Stimulating New Theoretical Ideas

XRF & GRB Jet Structure and Burst Rates

- A Unified Jet Model of XRFs, X-Ray-Rich GRBs, & GRBs (D. Q. Lamb, T. Q Donaghy & C. Graziani), New Astronomy Reviews, 48, 459 (2004)
- Quasi-Universal Gaussian Jets: A Unified Picture for GRBs & XRFs (B. Zhang, X. Dai, N. M. Lloyd-Ronning & P. Meszaros), ApJ, 601, L119 (2004)
- XRF 030723: Evidence for a Two-Component Jet (Y. F. Huang, X. F. Wu, Z. G. Dai, H. T. Ma & T. Lu), ApJ, 605, 300 (2004)
- XRF 020903: Sub-Luminous & Evidence for A Two-Component Jet (A. Soderberg et al.), ApJ, 606, 994 (2004)
- A Unified Jet Model of XRFs, X-Ray-Rich GRBs, & GRBs (D. Q. Lamb, T. Q Donaghy & C. Graziani, ApJ, in press (astro-ph/0312634) (2004)
- Unified Model of XRFs, X-Ray-Rich GRBs & GRBs (R. Yamazaki, K. loka & T. Nakamura), ApJ, 607, 103 (2004)
- Gaussian Universal Jet Model of XRFs & GRBs (X. Dai & B. Zhang), ApJ, submitted (2004)

XRF—SN Connection

- Possible SN in Afterglow of XRF 030723 (J. P. U. Fynbo et al.) ApJ, 609, 962 (2004)
- Model of Possible SN in Afterglow of XRF 030723 (Tominaga, N., et al.), ApJ, 612,105 (2004)
- XRFs & GRBs as a Laboratory for the Study of Type Ic SNe ((D. Q. Lamb, T. Q Donaghy & C. Graziani), New Astronomy Reviews, in press (2004)
- GRB-SN Connection: GRB 030329 & XRF 030723 (J. P. U. Fynbo et al.), Santa Fe GRB Workshop Proceedings, in press (2004)

Relativistic Beaming and Off-Axis Viewing Models of XRFs

- Peak Energy-Isotropic Energy Relation in the Off-Axis GRB Model (R. Yamazaki, K. loka & T. Nakamura), ApJ, 606, L33 (2004)
- Off-Axis Viewing as the Origin of XRFs (S. Ddo, A. Dr & A. De Rujula), A&A, in press (astro-ph/0308297) (2004)
- □ XRFs from Off-Axis Non-Uniform Jets (Z. P. Jin & D. M. Wei), A&A, submitted (astro-ph/0308061) (2004)

X-Ray and Optical Afterglows of XRFs Are Also Faint

Lamb, Donaghy & Graziani (2004)

- ☐ X-ray and optical afterglows of XRFs are *much fainter* than those of GRBs
- Left panel: slope = 0.74 +/-0.17; right panel: slope = -0.70 +/- 0.15 (68% CL) => tantalizing evidence that efficiency of prompt emission is much less for XRFs than for GRBs (as expected from V ⇔ L estimator)

X-Ray Flashes vs. GRBs: <u>HETE-2 and Swift (BAT)</u>

Even with the BAT's huge effective area (~2600 cm²), only HETE-2 can determine the spectral properties of the most extreme half of XRFs.

Ability of HETE-2 and Swift to Measure Epeak and S_{bol} of XRFs

GRB 020903

10

Epeak (keV)

20

 10^{-9}

E_{peak}(estimated) vs. E_{peak}:

- Shaded areas are 68% confidence regions
- Swift (red):
 - well-determined for E_{peak} > 20 keV
 - □ undetermined for E_{peak}< 20 keV
- HETE-2 (blue):
 - well-determined down to $E_{peak} \sim 3 \text{ keV}$

S_{bol}(estimated) vs. S_{bol}:

- ☐ Shaded areas are 68% confidence regions
- Swift (red):
 - \square well-determined for $E_{peak} > 20 \text{ keV}$
 - □ undetermined for E_{peak}< 20 keV
- □HETE-2 (blue):
 - \square well-determined down to $E_{peak} \sim 3 \text{ keV}$

Conclusions

- □ HETE-2 has provided strong evidence that XRFs, "X-ray-rich" GRBs, and GRBs are closely related phenomena
- XRFs provide unique insights into
 - structure of GRB jets
 - GRB rate
 - nature of Type Ic SNe
- Confirmation will require prompt
 - localization of many XRFs
 - determination of E_{peak}
 - identification of X-ray and optical afterglows
 - determination of redshifts
- □ HETE-2 is ideally suited to do the first two, whereas Swift (with E_{min} ~ 15 keV) is not; Swift is ideally suited to do the second two whereas HETE-2 cannot
- □ Prompt Swift XRT and UVOT observations of HETE-2 XRFs can therefore greatly advance our understanding of XRFs

HETE is Solving Mystery of "Optically Dark" GRBs

- 13 of 15 HETE-2 SXC plus WXM localizations have led to ID of an optical/IR afterglow
- These bursts are a "fair sample" of all bursts localized by HETE-2 above SXC threshold
- WXM localizations are the key to XRF science

E_{gamma}—E_{peak} Relation

Ghirlanda et al. (2004)

GRBs Have "Standard" Energies

Frail et al. (2001); Kumar and Panaitescu (2001)

Bloom et al.(2003)

Power-Law Universal Jet Model

- \Box E_{iso} (theta_{view}) ~ E_{gamma} (theta_{view})-2
- Exponent = -2 is necessary to recover the Frail et al. (2001) result (see, e.g., Rossi et al. 2002, Zhang & Meszaros 2002)
- Most viewing angles lie at ~ theta_{max} or ~ 90⁰ to jet axis (whichever is larger) because that is where most of solid angle is
- □ This implies that most bursts (and most bursts that we see) have large theta_view's, and therefore small E_{iso}'s, L_{gamma}'s, E_{peak}'s, etc. (Rossi et al. 2002, Zhang & Meszaros 2002, Perna et al. 2003)

Uniform Jet Model

- □ Frail et al. (2000) result => E_{iso} ~ E_{gamma} /Omega_{jet}
- Amati et al. (2002) relation => $E_{\text{peak}} \sim (E_{\text{iso}})^{1/2} \sim (E_{\text{gamma}}/Omega_{\text{iet}})^{1/2}$
- □ HETE-2 results show that E_{iso} spans ~ 5 decades!
- \square HETE-2 results imply $N(Omega_{iet}) \sim Omega_{iet}^{-2} =>$
 - □ there are many more bursts w. *small Omega*_{jet}'s than large; however, we don't see most of them
 - we see ~ equal numbers of bursts per logarithmic decade in *all* properties (*Omega_{jet}*, *E_{iso}*, *E_{peak}*, *L_{gamma}*, *L_x*, *L_R*, etc.)!

Simulations of Observed GRBs

- Our approach is the following:
 - We first model the bursts in the source frame
 - We then propagate the bursts from the source frame to the Earth, using the cosmology that we have adopted
 - We determine which bursts are observed, using the properties of the instruments that observe them
- We execute our simulations as follows:
 - □ For each burst, we obtain a redshift z and a jet opening solid angle Omega_{iet} by drawing from specific distributions
 - We introduce three Gaussian smearing functions to generate
 - □ Spread in jet energy (E_{gamma})
 - □ Spread in Epeak around the Amati et al. (2002) relation
 - Spread in the timescale T that converts fluence to flux
 - Using these five quantities, we calculate various rest-frame quantities (E_{iso} , E_{peak} , etc.)
 - Finally, we construct a Band function for each burst and transform it to the observer frame, which allows us to
 - Calculate fluences and peak fluxes
 - Determine if the burst would be detected by various instruments

Gaussian Smearing Functions

- Observed distributions are well-fit by narrow Gaussians
- No evidence for evolution of any of Gaussians w. redshift z

Predicted E_{ios}-E_{peak} Relation

BeppoSAX bursts

HETE-2 bursts

Determining If Bursts are Detected

BeppoSAX bursts

HETE-2 bursts

Comparison of Uniform Jet and Universal Jet Models

Lamb, Donaghy, and Graziani (2003)

Uniform Jet Model

Power-Law Universal Jet Model

Comparison of *Omega_{jet}* (*Omega_{view}*) w. Observations

Lamb, Donaghy, and Graziani (2003)

Universal Jet vs. Uniform Jet Models

Universal Jet Model

Uniform Jet Model

(Diagram from Lloyd-Ronning and Ramirez-Ruiz 2002)

Density of HETE-2 Bursts in (S, E_{peak})-Plane

Sakamoto et al. (2004)

Comparison of Predicted and Observed HETE-2 Fluence and E_{peak} Distributions

Lamb, Donaghy & Graziani (2003)

Power-Law Universal Jet Model

Comparison of Predicted and Observed HETE-2 Fluence and E_{peak} Distributions

Lamb, Donaghy & Graziani (2003)

Uniform Jet Model

E_{iso} – E_{peak} Relation

Lloyd-Ronning, Petrosian & Mallozzi (2000); Amati et al. (2002); Lamb et al. (2003)

Comparison of Universal and Uniform Jet Models

- Uniform jet model can account for both XRFs and GRBs
- □ Power-law universal jet model can account for GRBs, but not both XRFs and GRBs

Comparison of Predicted and Observed E_{iso} and E_{peak} Distributions

Lamb, Donaghy, and Graziani (2003)

Power-Law Universal Jet Model

Comparison of Predicted and Observed E_{iso} and E_{peak} Distributions

Lamb, Donaghy, and Graziani (2003)

Uniform Jet Model

Gaussian Universal Jet Model

Zhang et al. (2004)

Implications of the Uniform Jet Model

- Model provides unified picture of XRFs, "X-ray-rich GRBs," and GRBs
- Extra parameter (distribution of jet opening solid angles Omega_{jet}) enables it to account for key result: approximately equal numbers of bursts per logarithmic interval
- □ Model implies that E_{jet} and E_{gamma} may be ~ 30 times smaller than has been thought
- □ It will be important to determine whether bursts with much smaller values of $E_{\rm iso}$ and $L_{\rm iso}$ than the "standard" value are outliers, or are a sign that jet structure is more complicated
- \Box This is particularly true in the case of XRFs, which may have considerably smaller values of $E_{\rm iso}$ and $L_{\rm iso}$

Further Implications of Uniform Jet Model

- Model implies most bursts have small Omega_{jet} (these bursts are the hardest and most luminous bursts); however, we see very few of these bursts
- Unified jet model therefore implies that there are ~ 10⁵ more bursts with small *Omega*_{jet}'s for every such burst we see => if so, R_{GRB} may be comparable to R_{SN}
- □ However, efficiency in conversion of E_{gamma} (E_{jet}) to E_{iso} may be less for XRFs

HETE-2 Bursts in (S, E_{peak})-Plane

Sakamoto et al. (2004)

